Contribution No. 7001 from the Department of Chemistry, A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

Crystal Structure of Au₇(PPh₃)₇+: Corrigendum

Richard E. Marsh

Received March 15, 1984

The crystal structure of a compound of this heptanuclear cation (the anion was unidentified, but may have been OH-) was reported¹ as triclinic, space group $P\bar{1}$, with a = 34.94 (1) Å, b = 44.25 (2) Å, c = 15.45 (1) Å, $\alpha = 99.98$ (3)°, $\beta =$ 102.66 (3)°, $\gamma = 88.11$ (3)°, and Z = 8. It can more appropriately be described as monoclinic, space group C2/c. The vectors (201), (00 $\overline{1}$), ($\overline{1}$ 10) describe a cell with a' = 68.18 Å, $b' = 15.45 \text{ Å}, c' = 55.47 \text{ Å}, \alpha' = 89.99^{\circ}, \beta' = 128.22^{\circ}, \gamma' = 90.11^{\circ}, \text{ and } Z = 16.$ While the deviation of the angle γ' from 90° is marginally greater than would be expected on the basis of the reported uncertainties, conclusive evidence of the higher symmetry comes from the atomic positions (Table II of Ref 1), which, after the appropriate transformations (x' = 1/2)(x' = 1/2)+y), $y'=\frac{1}{2}(x+y)-z$, z'=y), conform in pairs to the symmetry of C2/c within the reported esd's. The C2/c coordinates and the shifts necessary to achieve this higher symmetry are given in Table I.

The c-glide plane of C2/c requires the systematic absence of reflections hk0 with (h + k) odd in the triclinic indexing. No such entries appear in the supplementary table of F's for 4787 reflections with $I > 3\sigma(I)$.

Acknowledgment. This investigation was supported in part by Public Health Service Research Grant No. GM 16966 from the National Institutes of Health.

Registry No. $Au_7(PPh_3)_7^+$, 92011-28-4.

Table I. Coordinates ($\times 10^4$ for Au, $\times 10^3$ for P) for the C2/c Description (Shifts Necessary To Achieve This Higher Symmetry Given in Square Brackets)

$x (\pm 1.5)^a$	$y (\pm 6.5)^a$	$z \ (\pm 1.8)^a$
1412 [0]	-114 [2]	1785 [0]
1126 [2]	873 [2]	1822 [3]
1038 [0]	-972 [3]	1764 [2]
906 [0]	85 [0]	1256 [0]
1264 [2]	1529 [4]	1486 [2]
	1332 [5]	2162 [0]
	-129 [2]	2337 [1]
6439 [2]	-1409 [3]	4430 [2]
6203 [1]	-54 [0]	4402 [2]
6118 [0]	-1737[4]	4554 [1]
	-1323 [5]	3939 [3]
	-313 [2]	3954 [1]
	76 [2]	4601 [1]
6605 [1]	-706 [3]	4988 [2]
$x (\pm 0.9)^a$	y (±4.1) ^a	$z (\pm 1.2)^a$
167 [1]	-101 [2]	178 [0]
	175 [1]	100 [1]
07[0]	1/5 [1]	189 [1]
85 [0]	-232[4]	166 [1]
	-232 [4] -4 [0]	
85 [0] 56 [1] 132 [0]	-232 [4] -4 [0] 248 [1]	166 [1] 77 [1] 124 [1]
85 [0] 56 [1] 132 [0] 200 [0]	-232 [4] -4 [0] 248 [1] 207 [0]	166 [1] 77 [1] 124 [1] 248 [2]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1] 597 [0]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4] 109 [6]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0] 436 [2]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1] 597 [0] 594 [0]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4] 109 [6] -270 [0]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0] 436 [2] 470 [0]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1] 597 [0] 594 [0] 557 [1]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4] 109 [6] -270 [0] -150 [3]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0] 436 [2] 470 [0] 350 [0]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1] 597 [0] 594 [0] 557 [1] 629 [1]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4] 109 [6] -270 [0] -150 [3] 22 [0]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0] 436 [2] 470 [0] 350 [0] 355 [1]
85 [0] 56 [1] 132 [0] 200 [0] 160 [1] 662 [1] 597 [0] 594 [0] 557 [1]	-232 [4] -4 [0] 248 [1] 207 [0] -40 [2] -242 [4] 109 [6] -270 [0] -150 [3]	166 [1] 77 [1] 124 [1] 248 [2] 284 [0] 445 [0] 436 [2] 470 [0] 350 [0]
	1412 [0] 1126 [2] 1038 [0] 906 [0] 1264 [2] 1634 [2] 1456 [2] 6439 [2] 6203 [1] 6118 [0] 5943 [3] 6315 [2] 6714 [1] 6605 [1]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

^a Esd's, estimated from the values in Table II of ref 1.

⁽¹⁾ van der Velden, J. W. A.; Beurskens, P. T.; Bour, J. J.; Bosman, W. P.; Noordik, J. H.; Kolenbrander, M.; Buskes, J. A. K. M. Inorg. Chem. 1984, 23, 146.